Selected Solutionsfor Chapter 15:
Dynamic Programming

Solution to Exercise 15.2-5

Each time thé-loop executes, theloop executeg — [+ 1 times. Each time the

i-loop executes, the-loop executeg —i = [— 1 times, each time referencing
m twice. Thus the total number of times that an entrywofs referenced while

computing other entries {5.,_,(n — [+ 1)(I — 1)2. Thus,

Y3 RGj) = D (n—l+DI—-1)2

i=1 j=i 1=2

n—1
= 2> (-0l
=1

n—1 n—1
= 2> nl-2) 17
=1 I=1

2n(n —Dn (n—1Dn2n—-1)

= —2
2 6
_ n3_n2_2n3—3n2+n
3
n®—n

Solution to Exercise 15.3-1

Running RECURSIVEMATRIX-CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and coimg the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches

* For each possible place to split the matrix chain, the enatioer approach
finds all ways to parenthesize the left half, finds all ways @oepthesize the
right half, and looks at all possible combinations of the Fkeflf with the right
half. The amount of work to look at each combination of lefidaight-half

15-2

Selected Solutions for Chapter 15: Dynamic Programming

subproblem results is thus the product of the number of wags the left half
and the number of ways to do the right half.

* For each possible place to split the matrix chaisCRRSIVEMATRIX -CHAIN
finds the best way to parenthesize the left half, finds thevis@gto parenthesize
the right half, and combines just those two results. Thustheunt of work to
combine the left- and right-half subproblem result®id).

Section 15.2 argued that the running time for enumerati€(i& /n>?). We will
show that the running time for ®EURSIVEMATRIX-CHAIN is O(n3"1!).

To get an upper bound on the running time &#dURSIVEMATRIX-CHAIN, we'll
use the same approach used in Section 15.2 to get a lower bDenigle a recur-
rence of the forml"(n) < ... and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of linesaidB—7 each take at
least unit time. For the upper-bound recurrence, we’ll amsthose pairs of lines
each take at most constant timeThus, we have the recurrence

c ifn=1,
n—1

T(n) < C+Z(T(k)+T(n—k)+c) ifn=>2.
k=1

This is just like the book’s> recurrence except that it hasnstead of 1, and so we
can be rewrite it as

n—1
T(n)<2) T(i)+cn.

i=1

We shall prove thaf'(n) = O(n3"!) using the substitution method. (Note: Any
upper bound o (n) that iso (4" /n>?) will suffice. You might prefer to prove one
that is easier to think up, such &gn) = 0(3.5").) Specifically, we shall show
that7(n) < cn3" ! foralln > 1. The basis is easy, sindg1) <c =c-1-3'"1,
Inductively, forn > 2 we have

n—1

T() < 2) T@)+cn
i=1
n—1
2Zci3i_l+cn

i=1
n—1
c~(2zz’3"—1+n)
i=1
n3r1 1-3"
= c¢-[2- see below
c((3—1+(3—1)2)+") ()
1-3"
= cn3"_1+c~(5 +n)

= cn3" '+ %(211 +1-3")

IA

IA

< cn3" foralle >0,n>1.

Sdlected Solutions for Chapter 15: Dynamic Programming 15-3

Running RECURSIVE-MATRIX -CHAIN takesO(n3"~1) time, and enumerating all
parenthesizations také€y4” /n3/?) time, and so RCURSIVEMATRIX-CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:

n—1 1 —x™

n—1
Zix"_1 i :
P x—1 (x—1)?

This equation can be derived from equation (A.5) by takirggdarivative. Let

f(x)=n2_:xi=xn_l—l.

x—1
Then
n—1 n—1 n
sl grp . hX I—x
;zx —f(x)—x_l—i-(x_l)z.

Solution to Exercise 15.4-4

When computing a particular row of thetable, no rows before the previous row
are needed. Thus only two row2—Y. length entries—need to be kept in memory
atatime. (Note: Each row efactually has.length+ 1 entries, but we don't need
to store the column of 0’'s—instead we can make the prograrovwkrihat those
entries are 0.) With this idea, we need oflymin(m, n) entries if we always call
LCS-LENGTH with the shorter sequence as theargument.

We can thus do away with thetable as follows:

* Use two arrays of length mim, n), previous-row andcurrent-row, to hold the
appropriate rows of.

* Initialize previous-row to all 0 and computeurrent-row from left to right.

* When current-row is filled, if there are still more rows to compute, copy
current-row into previous-row and compute the newaurrent-row.

Actually only a little more than one row’s worth ofentries—mirim, n) + 1 en-
tries—are needed during the computation. The only entresied in the table
when it is time to compute(i, j] arecli, k] for k < j — 1 (i.e., earlier entries in
the current row, which will be needed to compute the next ramiic[i — 1, k] for

k > j —1 (i.e., entries in the previous row that are still needed tooate the rest

of the current row). This is one entry for eakHrom 1 to min(m, n) except that
there are two entries with = j — 1, hence the additional entry needed besides the
one row’'s worth of entries.

We can thus do away with thetable as follows:

* Use an array of length minim, n) + 1 to hold the appropriate entries of At
the timec|i, j] is to be computed; will hold the following entries:

* alk] =cli,k]for1 <k < j —1 (i.e., earlier entries in the current “row”),
* alk] =c[i —1,k]fork > j — 1 (i.e., entries in the previous “row”),

15-4 Selected Solutions for Chapter 15: Dynamic Programming

* al0] = c[i, j — 1] (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededi — 1, j — 1]).
* Initialize a to all 0 and compute the entries from left to right.
* Note that the 3 values needed to compefte j] for j > 1 are ina[0] =
cli,j—1),a[j —1]=cli —1,j —1],anda[j] = c[i — 1, J].
* Whencli, j] has been computed, mowg0] (c[i, j — 1]) to its “correct”
placea[j — 1], and put[i, j] in a[0].

Solution to Problem 15-4

Note: We assume that no word is longer than will fit into a line,, ; < M for
alli.

First, we’ll make some definitions so that we can state thblpro more uniformly.
Special cases about the last line and worries about whetezueence of words fits
in a line will be handled in these definitions, so that we cagdbabout them when
framing our overall strategy.

* Defineextrasi, j] = M — j +i — > ;_, lx to be the number of extra spaces
at the end of a line containing wordsthrough j. Note thatextras may be
negative.

* Now define the cost of including a line containing wordlrough; in the sum
we want to minimize:

00 if extras(i, j] < 0 (i.e., words, ..., j don'tfit),
Icli, j]=(0 if j = n andextragi, j] > 0 (last line costs 0)
(extras[i, j])> otherwise.

By making the line cost infinite when the words don't fit on i ywrevent such
an arrangement from being part of a minimal sum, and by makiagost O for
the last line (if the words fit), we prevent the arrangemeriheflast line from
influencing the sum being minimized.

We want to minimize the sum o€ over all lines of the paragraph.

Our subproblems are how to optimally arrange wotds.., j, wherej =
1,...,n.

Consider an optimal arrangement of words. ., j. Suppose we know that the
last line, which ends in word, begins with word . The preceding lines, therefore,
contain wordsl, ...,i — 1. In fact, they must contain an optimal arrangement of
wordsl,...,i — 1. (The usual type of cut-and-paste argument applies.)

Let c[/] be the cost of an optimal arrangement of wolds. ., j. If we know that
the last line contains words. . ., j, thenc[j] = c[i — 1] +Ic[i, j]. As a base case,
when we’re computing[1], we need:[0]. If we setc[0] = 0, thenc[1] = Ic[1, 1],
which is what we want.

But of course we have to figure out which word begins the last for the sub-
problem of wordsl, ..., j. So we try all possibilities for word, and we pick the
one that gives the lowest cost. Heir@anges froml to j. Thus, we can defing] ;]
recursively by

Sdlected Solutions for Chapter 15: Dynamic Programming 15-5

| if j =0,
UI= min (cli =11 +1cli. j)) />0,

1<i=<j

Note that the way we defindd ensures that

» all choices made will fit on the line (since an arrangementVat= oo cannot
be chosen as the minimum), and

* the cost of putting words . . ., j on the last line will not be 0 unless this really
is the last line of the paragrapli & n) or wordsi ... j fill the entire line.

We can compute a table ofvalues from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep alphyatable that
points to where each value came from. Whea([] is computed, if[;] is based
on the value ot [k — 1], setp[j] = k. Then afterc[n] is computed, we can trace
the pointers to see where to break the lines. The last limesstdwordp([n] and
goes through word. The previous line starts at wone] p[n]] and goes through
word p[n] — 1, etc.

In pseudocode, here’s how we construct the tables:

PRINT-NEATLY ([,n, M)

letextras[l..n,1..n],Ic[1..n,1..n],andc[0..n] be new arrays
/I Computeextras|i, j]for1 <i < j <n.
fori = 1ton
extrasli,i] = M —
forj =i+ 1ton
extrasi, j| = extrasli,j — 1] —1; — 1
/I Computec[i, j]forl <i < j <n.
fori = 1ton
for j =iton
if extragfi, j] <0
Ic[i, j] = oo
elseif j ==n andextras[i, j] > 0
Icli, j] =0
eselcfi, j] = (extras[i, j])*
/I Computec[j]andp[j]forl < j <n.

c[0] =0

for j = 1ton
c[j] = o0
fori = 1toj

if cli — 1] +Icli, j] < c[j]
clj] = cli = 1]+ Ici, j]
plil =i
return c andp

Quite clearly, both the time and space @ré:?).

In fact, we can do a bit better: we can get both the time andespaswn to® (n M).
The key observation is that at mds¥//2] words can fit on a line. (Each word is

15-6

Selected Solutions for Chapter 15: Dynamic Programming

at least one character long, and there’s a space betwees.yv&idce a line with
wordsi, ..., j containsj —i + 1 words, ifj —i + 1 > [M/2] then we know
thatlc[i, j] = oo. We need only compute and stoeetras(i, j] andlc]i, j] for
j—i4+1<[M/2]. And the innerfor loop header in the computation of;]
andp[j] canrunfrommakl, j — [M/2] +1)toj.

We can reduce the space even furthe®t(). We do so by not storing thie
andextras tables, and instead computing the valudaif, j] as needed in the last
loop. The idea is that we could computi, j] in O(1) time if we knew the
value ofextras]i, j]. And if we scan for the minimum value itescending order
of i, we can compute that astragfi, j| = extrasi + 1, j] — /; — 1. (Initially,
extras(j, j] = M —[;.) This improvement reduces the spaceéi@), since now
the only tables we store areand p.

Here’'s how we print which words are on which line. The prinmaput of
GIVE-LINES(p, j) is a sequence of triplg%, i, j), indicating that words, . .., j
are printed on liné. The return value is the line numbler

GIVE-LINES(p, j)
i = plj]
if i ==
k=1
elsek = GIVE-LINES(p,i — 1)+ 1
print (k,i, j)
return k

The initial call is GVE-LINES(p, n). Since the value of decreases in each recur-
sive call, GQvE-LINES takes a total oD (n) time.

