
Selected Solutions for Chapter 15:
Dynamic Programming

Solution to Exercise 15.2-5

Each time thel-loop executes, thei-loop executesn � l C 1 times. Each time the
i-loop executes, thek-loop executesj � i D l � 1 times, each time referencing
m twice. Thus the total number of times that an entry ofm is referenced while
computing other entries is

Pn

lD2.n � l C 1/.l � 1/2. Thus,
n
X

iD1

n
X

j Di

R.i; j / D

n
X

lD2

.n � l C 1/.l � 1/2

D 2

n�1
X

lD1

.n � l/l

D 2

n�1
X

lD1

nl � 2

n�1
X

lD1

l2

D 2
n.n � 1/n

2
� 2

.n � 1/n.2n � 1/

6

D n3 � n2 �
2n3 � 3n2 C n

3

D
n3 � n

3
:

Solution to Exercise 15.3-1

Running RECURSIVE-MATRIX -CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and computing the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches.

� For each possible place to split the matrix chain, the enumeration approach
finds all ways to parenthesize the left half, finds all ways to parenthesize the
right half, and looks at all possible combinations of the left half with the right
half. The amount of work to look at each combination of left- and right-half



15-2 Selected Solutions for Chapter 15: Dynamic Programming

subproblem results is thus the product of the number of ways to do the left half
and the number of ways to do the right half.

� For each possible place to split the matrix chain, RECURSIVE-MATRIX -CHAIN

finds the best way to parenthesize the left half, finds the bestway to parenthesize
the right half, and combines just those two results. Thus theamount of work to
combine the left- and right-half subproblem results isO.1/.

Section 15.2 argued that the running time for enumeration is�.4n=n3=2/. We will
show that the running time for RECURSIVE-MATRIX -CHAIN is O.n3n�1/.

To get an upper bound on the running time of RECURSIVE-MATRIX -CHAIN , we’ll
use the same approach used in Section 15.2 to get a lower bound: Derive a recur-
rence of the formT .n/ � : : : and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1–2and 6–7 each take at
least unit time. For the upper-bound recurrence, we’ll assume those pairs of lines
each take at most constant timec. Thus, we have the recurrence

T .n/ �

�
c if n D 1 ;

c C

n�1
X

kD1

.T .k/ C T .n � k/ C c/ if n � 2 :

This is just like the book’s� recurrence except that it hasc instead of 1, and so we
can be rewrite it as

T .n/ � 2

n�1
X

iD1

T .i/ C cn :

We shall prove thatT .n/ D O.n3n�1/ using the substitution method. (Note: Any
upper bound onT .n/ that iso.4n=n3=2/ will suffice. You might prefer to prove one
that is easier to think up, such asT .n/ D O.3:5n/.) Specifically, we shall show
thatT .n/ � cn3n�1 for all n � 1. The basis is easy, sinceT .1/ � c D c � 1 � 31�1.
Inductively, forn � 2 we have

T .n/ � 2

n�1
X

iD1

T .i/ C cn

� 2

n�1
X

iD1

ci3i�1 C cn

� c �

 

2

n�1
X

iD1

i3i�1 C n

!

D c �

�

2 �

�

n3n�1

3 � 1
C

1 � 3n

.3 � 1/2

�

C n

�

(see below)

D cn3n�1 C c �

�

1 � 3n

2
C n

�

D cn3n�1 C
c

2
.2n C 1 � 3n/

� cn3n�1 for all c > 0, n � 1 .



Selected Solutions for Chapter 15: Dynamic Programming 15-3

Running RECURSIVE-MATRIX -CHAIN takesO.n3n�1/ time, and enumerating all
parenthesizations takes�.4n=n3=2/ time, and so RECURSIVE-MATRIX -CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:

n�1
X

iD1

ixi�1 D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

This equation can be derived from equation (A.5) by taking the derivative. Let

f .x/ D

n�1
X

iD1

xi D
xn � 1

x � 1
� 1 :

Then
n�1
X

iD1

ixi�1 D f 0.x/ D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

Solution to Exercise 15.4-4

When computing a particular row of thec table, no rows before the previous row
are needed. Thus only two rows—2 � Y: length entries—need to be kept in memory
at a time. (Note: Each row ofc actually hasY: lengthC1 entries, but we don’t need
to store the column of 0’s—instead we can make the program “know” that those
entries are 0.) With this idea, we need only2 � min.m; n/ entries if we always call
LCS-LENGTH with the shorter sequence as theY argument.

We can thus do away with thec table as follows:

� Use two arrays of length min.m; n/, pre�ious-row andcurrent-row, to hold the
appropriate rows ofc.

� Initialize pre�ious-row to all 0 and computecurrent-row from left to right.
� When current-row is filled, if there are still more rows to compute, copy

current-row into pre�ious-row and compute the newcurrent-row.

Actually only a little more than one row’s worth ofc entries—min.m; n/ C 1 en-
tries—are needed during the computation. The only entries needed in the table
when it is time to computecŒi; j � arecŒi; k� for k � j � 1 (i.e., earlier entries in
the current row, which will be needed to compute the next row); andcŒi � 1; k� for
k � j � 1 (i.e., entries in the previous row that are still needed to compute the rest
of the current row). This is one entry for eachk from 1 to min.m; n/ except that
there are two entries withk D j � 1, hence the additional entry needed besides the
one row’s worth of entries.

We can thus do away with thec table as follows:

� Use an arraya of length min.m; n/ C 1 to hold the appropriate entries ofc. At
the timecŒi; j � is to be computed,a will hold the following entries:

� aŒk� D cŒi; k� for 1 � k < j � 1 (i.e., earlier entries in the current “row”),
� aŒk� D cŒi � 1; k� for k � j � 1 (i.e., entries in the previous “row”),



15-4 Selected Solutions for Chapter 15: Dynamic Programming

� aŒ0� D cŒi; j � 1� (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededcŒi � 1; j � 1�).

� Initialize a to all 0 and compute the entries from left to right.

� Note that the 3 values needed to computecŒi; j � for j > 1 are inaŒ0� D

cŒi; j � 1�, aŒj � 1� D cŒi � 1; j � 1�, andaŒj � D cŒi � 1; j �.
� When cŒi; j � has been computed, moveaŒ0� (cŒi; j � 1�) to its “correct”

place,aŒj � 1�, and putcŒi; j � in aŒ0�.

Solution to Problem 15-4

Note: We assume that no word is longer than will fit into a line,i.e., li � M for
all i .

First, we’ll make some definitions so that we can state the problem more uniformly.
Special cases about the last line and worries about whether asequence of words fits
in a line will be handled in these definitions, so that we can forget about them when
framing our overall strategy.
� DefineextrasŒi; j � D M � j C i �

Pj

kDi lk to be the number of extra spaces
at the end of a line containing wordsi throughj . Note thatextras may be
negative.

� Now define the cost of including a line containing wordsi throughj in the sum
we want to minimize:

lcŒi; j � D

�
1 if extrasŒi; j � < 0 (i.e., wordsi; : : : ; j don’t fit) ;

0 if j D n andextrasŒi; j � � 0 (last line costs 0);

.extrasŒi; j �/3 otherwise:

By making the line cost infinite when the words don’t fit on it, we prevent such
an arrangement from being part of a minimal sum, and by makingthe cost 0 for
the last line (if the words fit), we prevent the arrangement ofthe last line from
influencing the sum being minimized.

We want to minimize the sum oflc over all lines of the paragraph.

Our subproblems are how to optimally arrange words1; : : : ; j , where j D

1; : : : ; n.

Consider an optimal arrangement of words1; : : : ; j . Suppose we know that the
last line, which ends in wordj , begins with wordi . The preceding lines, therefore,
contain words1; : : : ; i � 1. In fact, they must contain an optimal arrangement of
words1; : : : ; i � 1. (The usual type of cut-and-paste argument applies.)

Let cŒj � be the cost of an optimal arrangement of words1; : : : ; j . If we know that
the last line contains wordsi; : : : ; j , thencŒj � D cŒi �1�C lcŒi; j �. As a base case,
when we’re computingcŒ1�, we needcŒ0�. If we setcŒ0� D 0, thencŒ1� D lcŒ1; 1�,
which is what we want.

But of course we have to figure out which word begins the last line for the sub-
problem of words1; : : : ; j . So we try all possibilities for wordi , and we pick the
one that gives the lowest cost. Here,i ranges from1 to j . Thus, we can definecŒj �

recursively by



Selected Solutions for Chapter 15: Dynamic Programming 15-5

cŒj � D

(

0 if j D 0 ;

min
1�i�j

.cŒi � 1� C lcŒi; j �/ if j > 0 :

Note that the way we definedlc ensures that

� all choices made will fit on the line (since an arrangement with lc D 1 cannot
be chosen as the minimum), and

� the cost of putting wordsi; : : : ; j on the last line will not be 0 unless this really
is the last line of the paragraph (j D n) or wordsi : : : j fill the entire line.

We can compute a table ofc values from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep a parallel p table that
points to where eachc value came from. WhencŒj � is computed, ifcŒj � is based
on the value ofcŒk � 1�, setpŒj � D k. Then aftercŒn� is computed, we can trace
the pointers to see where to break the lines. The last line starts at wordpŒn� and
goes through wordn. The previous line starts at wordpŒpŒn�� and goes through
wordpŒn� � 1, etc.

In pseudocode, here’s how we construct the tables:

PRINT-NEATLY .l; n; M /

let extrasŒ1 : : n; 1 : : n�, lcŒ1 : : n; 1 : : n�, andcŒ0 : : n� be new arrays
// ComputeextrasŒi; j � for 1 � i � j � n.
for i D 1 to n

extrasŒi; i � D M � li

for j D i C 1 to n

extrasŒi; j � D extrasŒi; j � 1� � lj � 1

// ComputelcŒi; j � for 1 � i � j � n.
for i D 1 to n

for j D i to n

if extrasŒi; j � < 0

lcŒi; j � D 1

elseif j == n andextrasŒi; j � � 0

lcŒi; j � D 0

else lcŒi; j � D .extrasŒi; j �/3

// ComputecŒj � andpŒj � for 1 � j � n.
cŒ0� D 0

for j D 1 to n

cŒj � D 1

for i D 1 to j

if cŒi � 1� C lcŒi; j � < cŒj �

cŒj � D cŒi � 1� C lcŒi; j �

pŒj � D i

return c andp

Quite clearly, both the time and space are‚.n2/.

In fact, we can do a bit better: we can get both the time and space down to‚.nM /.
The key observation is that at mostdM=2e words can fit on a line. (Each word is



15-6 Selected Solutions for Chapter 15: Dynamic Programming

at least one character long, and there’s a space between words.) Since a line with
wordsi; : : : ; j containsj � i C 1 words, if j � i C 1 > dM=2e then we know
that lcŒi; j � D 1. We need only compute and storeextrasŒi; j � and lcŒi; j � for
j � i C 1 � dM=2e. And the innerfor loop header in the computation ofcŒj �

andpŒj � can run from max.1; j � dM=2e C 1/ to j .

We can reduce the space even further to‚.n/. We do so by not storing thelc
andextras tables, and instead computing the value oflcŒi; j � as needed in the last
loop. The idea is that we could computelcŒi; j � in O.1/ time if we knew the
value ofextrasŒi; j �. And if we scan for the minimum value indescending order
of i , we can compute that asextrasŒi; j � D extrasŒi C 1; j � � li � 1. (Initially,
extrasŒj; j � D M � lj .) This improvement reduces the space to‚.n/, since now
the only tables we store arec andp.

Here’s how we print which words are on which line. The printedoutput of
GIVE-L INES.p; j / is a sequence of triples.k; i; j /, indicating that wordsi; : : : ; j

are printed on linek. The return value is the line numberk.

GIVE-L INES.p; j /

i D pŒj �

if i == 1

k D 1

else k D GIVE-L INES.p; i � 1/ C 1

print .k; i; j /

return k

The initial call is GIVE-L INES.p; n/. Since the value ofj decreases in each recur-
sive call, GIVE-L INES takes a total ofO.n/ time.


